Referenzprojekte

Hier finden Sie eine kleine Auswahl unserer Forschungsprojekte.

Abbrechen
  • Das Foto zeigt ein Stück Spanplatte neben einem Laborglas mit einer zähen, schwarzbraunen Flüssigkeit sowie einem kleinen Haufen Holzspäne.
    © Fraunhofer WKI | Manuela Lingnau

    Spanplatten sind ein nachhaltiges und günstiges Baumaterial für Häuser und Möbel. Sie können aus regional verfügbaren Holzresten sowie recyceltem Altholz hergestellt werden. Mit diesem Forschungsvorhaben werden Spanplatten noch zukunftsfähiger. Gemeinsam mit Industriepartnern entwickeln wir Spanplatten, die mit einem neuartigen Klebstoff hergestellt werden. Er soll kein gesundheitskritisches Formaldehyd freisetzen und vollständig aus biogenen Rohstoffen bestehen. Außerdem testen wir, ob sich die Spanplatten mit alternativen Holzarten herstellen lassen, die aufgrund des Waldumbaus künftig vermehrt zur Verfügung stehen.

    mehr Info
  • Das Foto zeigt ein hellbraunes, festes Gewebe (links) sowie die gleiche Gewebeart mit glänzender Oberfläche und intensiverer Färbung (rechts).
    © Fraunhofer WKI | Manuela Lingnau

    Organobleche aus Faserverbundkunststoff lassen sich angelehnt an die formgebenden Prozesse aus der Stahl- oder Aluminiumblechverarbeitung umformen. Bisher kommen für die Herstellung vor allem Glasfasern aber auch Carbon- oder Aramidfasern sowie petrochemische Kunststoffe zum Einsatz. Gemeinsam mit dem Institut für Biokunststoffe und Bioverbundwerkstoffe (IfBB) der Hochschule Hannover entwickeln wir eine nachhaltige und konkurrenzfähige Alternative: Bio-Organobleche aus Naturfasern und Biokunststoff mit verbesserten Materialeigenschaften sowie hoher Recyclingfähigkeit. Sie könnten diverse Produkte nachhaltiger machen – darunter Fahrzeuge, Gehäuse, Verkleidungen und Sportgeräte. Auch dank der guten Verfügbarkeit preiswerter Rohstoffe haben Bio-Organobleche ein hohes Marktpotenzial.

    mehr Info
  • Die Fotomontage zeigt einen Baumstamm, einen Haufen braunes Ligninpulver und die symbolhafte, grafische Darstellung eines Stuhls.
    © Fraunhofer WKI | Manuela Lingnau

    Kleine Stadtwohnungen, Umzüge sowie wechselnde Wohn- und Arbeitssituationen: Möbel müssen heutzutage hohe Ansprüche an Funktionalität und Flexibilität erfüllen. Gemeinsam mit Forschungspartnern und Unternehmen entwickeln wir Möbel, die diesen Anforderungen gerecht werden und zudem nachhaltig sind. Ausgangspunkt ist die Neu- und Weiterentwicklung von Compounds, Schäumen und Lederimitaten aus Lignin – einem pflanzlichen Reststoff der Industrie. Daraus sollen modulare, leichte Möbel entstehen, die sich einfach auseinander bauen, mitnehmen, reparieren und umnutzen lassen. Das heißt: Die Materiallebensdauer soll möglichst lang sein. Ein weiterer Schwerpunkt des Projekts ist die Recyclingfähigkeit der Möbel – von ganzen Baugruppen bis zur sortenreinen Auftrennung und Aufbereitung der einzelnen Materialien. Möglichkeiten des Materialtransfers auf weitere Anwendungsbereiche wie Modeindustrie und Wohnmobilbereich werden ebenfalls betrachtet.

    mehr Info
  • Das Foto zeigt ein Metallgestell unter freiem Himmel, das mit einer Vielzahl an verschiedenfarbig beschichteten Holzteilen bestückt ist, die schräg Richtung Himmel geneigt sind.
    © Hanno Keppel

    Immer mehr Häuser werden mit Wärmedämmverbundsystemen (WDVS) isoliert. Das spart Energie, jedoch siedeln sich auf den Fassaden vermehrt Algen an. Darunter leidet nicht nur die Ästhetik, sondern auch das Diffusionsvermögen der Oberflächenbeschichtung. Das kann zu Feuchteschäden führen. Um das Algenwachstum zu reduzieren, kommen bislang oft biozidhaltige Fassadenanstriche zum Einsatz. Problem: Die Biozide werden innerhalb weniger Jahre ausgewaschen. Dadurch kann es zu Umweltbelastungen und zunehmendem Algenwuchs auf der Fassade kommen. Gemeinsam mit Industriepartnern entwickeln wir eine biobasierte, witterungsbeständige Fassadenfarbe, die den mikrobiellen Bewuchs physikalisch verhindern soll. Sie könnte WDVS-Fassaden langfristig vor Algen schützen – ganz ohne Biozide.

    mehr Info
  • Das Foto zeigt ein kleines, rechteckiges, flaches Stück Werkstoff, das per Hand bogenförmig verformt wird.
    © Deutsches Zentrum für Luft und Raumfahrt (DLR)

    Aerogele sind hochporöse, federleichte Werkstoffe mit außergewöhnlichen Eigenschaften: extrem niedrige Wärmeleitfähigkeit, geringe Schallübertragung sowie hohe Adsorptionswirkung für flüchtige organische Verbindungen. Sie eignen sich hervorragend sowohl für den Leichtbau als auch als Filtermaterial und gelten daher als Zukunftswerkstoff. Gemeinsam mit Forschungs- und Industriepartnern entwickeln wir ein Verfahren zur Herstellung von Aerogelen auf Basis von Altholz. Aus den Aerogelen stellen wir Prototypen von Dämmstoffen und schadstoffadsorbierenden Raumluftfiltern her, die in Gebäuden und Fahrzeugen eingesetzt werden können. Darüber hinaus sollen Transfermöglichkeiten zu Anwendungen in der Abgasreinigung aufgezeigt werden. Weiteres Projektziel: Aus den Produkten sollen die für die Herstellung der Aerogele benötigten Rohstoffe wiedergewonnen werden. Mit dieser nachhaltigen Werkstofflösung unterstützen wir den Gesundheitsschutz sowie den Kampf gegen Klimawandel und Ressourcenknappheit.

    mehr Info
  • Grafische Darstellung des Funktionsprinzips der Klebstoffschaltung.
    © Fraunhofer WKI

    Leichte Autos, LKW und Züge aus nachwachsenden Rohstoffen können zum Ressourcen- und Klimaschutz beitragen. Als Fügetechnologie für die Fertigung von Leichtbauteilen bietet insbesondere das Kleben viele Vorteile und gewinnt daher zunehmend an Bedeutung. Gemeinsam mit Forschungs- und Industriepartnern entwickeln wir einen biobasierten, schaltbaren PU-Flächenklebstoff. Dieser soll es ermöglichen, plattenförmige Schichtwerkstoffe aus Holz bzw. Holz und Metall herzustellen, die erst im späteren Verlauf der Prozesskette zu 3D-Bauteilen umgeformt werden. Dies eröffnet neue Möglichkeiten für die flexible, wirtschaftlich effiziente Produktion von nachhaltigen Leichtbaufahrzeugen sowie für die Reparatur und das Recycling. Denn: Dank der wiederlösbaren Klebverbindung sollen sich Holz und Metall sortenrein und möglichst schadfrei wieder trennen lassen.

    mehr Info
  • Das Foto zeigt mehrere quadratische Proben einer dünnen Sperrholzplatte. Auf der Oberseite der Holzwerkstoffproben befindet sich jeweils ein Hügel eines schwarz-braunen, schaumartigen Materials mit poröser Struktur. Bei jeder Probe ist die Größe und Form des Hügels unterschiedlich.
    © Fraunhofer WKI | Manuela Lingnau

    Holz als natürlicher und nachhaltiger Baustoff für Gebäude gewinnt immer mehr an Bedeutung. Allerdings gibt es noch keine zufriedenstellende Brandschutzlösung für Holz im Außenbereich. Ein fehlender Flammschutz ist ein Ausschlusskriterium für Holzbauteile bei hohen bzw. großflächigen Gebäuden (Gebäudeklassen 4 und 5), sofern keine kost- und zeitintensive Zulassung im Einzelfall beantragt wird. Gemeinsam mit unserem Projektpartner entwickeln wir eine umweltfreundliche Flammschutzbeschichtung für frei bewittertes Holz. Sie soll ohne zusätzlichen Decklack auskommen und transparent einsetzbar sein. Damit tragen wir dazu bei, dass Holzfassaden und andere Außenbauteile aus Holz in der Bauindustrie stärker zum Einsatz kommen können – zum Beispiel bei Hochhäusern, Schulen oder Krankenhäusern.

    mehr Info
  • Die 3D-Computergrafik zeigt den Aufbau eines Brennstoffzellenstacks: außen zwei rechteckige, flache Blöcke (Endplatten), dazwischen mehrere dünne Platten mit derselben Höhe und Breite. Die Gesamtform des Stacks ähnelt einem Akkordeon.
    © ZBT GmbH

    In der Nationalen Wasserstoffstrategie legte die Bundesregierung 2020 fest, grünen Wasserstoff als Schlüsseltechnologie für die Energiewende zu etablieren. Die Nachfrage nach Wasserstoff-Brennstoffzellen wird daher künftig steigen, etwa für den Ausbau der Elektromobilität durch Brennstoffzellenfahrzeuge, die Notstromversorgung oder als Kraft-Wärme-Kopplungsanlagen zur kombinierten Erzeugung von Strom und Wärme für die Industrie (Prozesswärme) sowie Büro- und Wohngebäude (Heizwärme). Bislang bestehen Brennstoffzellen meist aus Metall und petrochemischen Kunstoffen. Ziel dieses Projekts mit zwei Forschungspartnern ist ein biobasiertes Brennstoffzellensystem. Es soll nicht nur nachhaltiger, sondern auch kompakter, leichter und preiswerter sein als herkömmliche Systeme. Das Fraunhofer WKI entwickelt hierfür hochleistungsfähige Holzwerkstoffe sowie Biopolymere zur Fertigung von elektrisch leitfähigen Compounds.

    mehr Info
  • Das Foto zeigt vier Holzwerkstoffplatten mit unterschiedlichen Farben und Strukturen.
    © Studio Sofia Souidi

    Regale, Schränke und andere Möbelstücke bestehen oft aus Holzfaserplatten. Sie werden derzeit meist mit petrochemischen Bindemitteln hergestellt, die gesundheitskritisches Formaldehyd ausdünsten. Mit Unterstützung des Fraunhofer WKI entwickelt die Designerin Sofia Souidi einen Werkstoff aus Holzfasern und Casein – ein formaldehydfreies Bindemittel, das schon vor Jahrhunderten als Klebstoff verwendet wurde. Beigemischte Farbpigmente und Granulate sowie 3D-Formbarkeit sorgen für vielfältige Gestaltungsmöglichkeiten. Das Material soll aus recycelten Komponenten bestehen und selbst recyclingfähig sein.

    mehr Info
  • Das Foto zeigt eine metallische Apparatur, in die ein Stück Fichtensperrholz eingespannt ist. Das Holzstück wird mithilfe einer davor installierten Gasflamme direkt beflammt. Auf dem Holz bildet sich im Bereich der Beflammung ein ovaler dunkelbrauner Fleck (Verkohlung).
    © Fraunhofer WKI | Manuela Lingnau

    Möbel und Bauelemente aus Holz und Holzwerkstoffen sind umweltfreundlich und erfreuen sich großer Beliebtheit. Bisher gibt es jedoch keine nachhaltigen Flammschutzlösungen für Holzoberflächen im Innenraum. Gemeinsam mit unseren Projektpartnern entwickeln wir formaldehydfreie, transparente und farbige Flammschutzlacke mit dauerhafter Brandschutzwirkung auf Basis nachwachsender Rohstoffe. Somit erweitern wir die Möglichkeiten für den Innenausbau mit Holz unter Einhaltung von erhöhten Gesundheits-, Umwelt- und Brandschutzvorschriften – zum Beispiel in Schulen, Theatern, Flughäfen oder beim Messebau.

    mehr Info