Referenzprojekte

Hier finden Sie eine kleine Auswahl unserer Forschungsprojekte.

Abbrechen
  • Das Foto zeigt ein kleines Stück MDF, einen kleinen Haufen Holzfasern, ein Labor-Becherglas mit einer farblosen Flüssigkeit, ein kleines Laborschälchen mit hellblauem Pulver sowie ein Laborschälchen mit weißem Pulver.
    © Fraunhofer WKI | Manuela Lingnau

    Mitteldichte Faserplatten (MDF) werden vielfach im Möbelbau eingesetzt. Sie haben eine sehr homogene Oberfläche, die sich besonders glatt beschichten lässt. Außerdem lassen sie sich ökonomisch und nachhaltig aus regional verfügbarem Holz sowie recyceltem Altholz herstellen. Daher spielen sie auch in der Bauindustrie eine große Rolle – zum Beispiel als Trägermaterial für Fußbodenbeläge oder Wandpaneele. Mit diesem Forschungsvorhaben möchten wir MDF und ähnliche Faserplatten noch zukunftsfähiger machen. Gemeinsam mit Industriepartnern entwickeln wir ein formaldehydfreies Klebstoffsystem mit biobasierten Stoffen, die preiswert am Markt verfügbar sind. Besonderer Clou: Das neue Klebstoffsystem kommt ohne klassischen Klebstoff aus.

    mehr Info
  • Das Foto zeigt drei WPC-Prüfstäbe ohne Brandspuren und drei WPC-Prüfstäbe mit Brandspuren.
    © Fraunhofer WKI | Anett Seiler

    Gebäude, Fahrzeuge, Elektronik und Co: In vielen Bereichen gibt es erhöhte Brandschutzanforderungen. Nachhaltige Biowerkstoffe können sie unter anderem mithilfe von Flammschutzmitteln erfüllen. Diese werden derzeit überwiegend aus erdölbasierten, mineralischen und anderen endlichen Rohstoffen hergestellt. Gemeinsam mit dem Fraunhofer IAP entwickeln und testen wir Flammschutzmittel auf Basis eines pflanzenbasierten Rohstoffs, der in der Industrie in hohen Mengen als Nebenprodukt anfällt: Maisquellwasser. Die darin enthaltene Phytinsäure soll als flammhemmender Wirkstoff nutzbar gemacht werden. Das Anwendungspotenzial und die Flammschutzeigenschaften demonstrieren wir beispielhaft an einem Holz-Kunststoff-Verbundwerkstoff (Wood Plastic Composite, WPC). Ziel ist die Entwicklung eines wirtschaftlichen Herstellungsverfahrens für das Flammschutzmittel in einem technischen Maßstab. Das Projekt trägt dazu bei, die Konkurrenzfähigkeit von biobasierten Flammschutzmitteln zu verbessern und den Einsatz von Biowerkstoffen zu erhöhen. Damit unterstützen wir den Aufbau einer biobasierten Kreislaufwirtschaft aus lokal verfügbaren Reststoffen (Bioökonomie).

    mehr Info
  • Das Foto zeigt eine Laborapparatur: Auf einer vertikal eingespannten Metallplatte ist eine Klebstofffolie aufgebracht, die mithilfe einer Gasbrenner-Flamme von schräg unten beflammt wird.
    © Fraunhofer WKI

    Brettsperrholz hat sich als vielseitiges Holzprodukt in der Bauindustrie etabliert. Es wird in tragenden und nicht-tragenden Bauteilen wie Wänden, Decken und Böden eingesetzt. Gemeinsam mit Forschenden der TU Braunschweig sowie Industriepartnern entwickeln wir Brettsperrholz mit sehr guten Brand- und Umwelteigenschaften. Erreichen wollen wir dies durch die Entwicklung von biobasierten Flammschutzmitteln aus Reststoffen der Landwirtschaft und der Holzverarbeitung. Sie sollen in Klebstoffsystemen und Beschichtungen für Brettsperrholzelemente zum Einsatz kommen. Die Projektergebnisse sollen es ermöglichen, das Marktpotenzial von Brettsperrholz im Holzbau für mittelhohe und hohe Gebäude besser auszuschöpfen.

    mehr Info
  • Das Foto zeigt drei plattenförmige Materialmuster aus weißem, festem Schaum mit Deckschichten aus verschiedenen Materialien.
    © Fraunhofer ICT

    Leichte Fahrzeuge und Baustoffe sind besonders energieeffizient. Mit Blick auf ein möglichst geringes Gewicht bei gleichzeitig guter Wärmedämmung kommen vielfach Verbundmaterialien zum Einsatz, die sich gar nicht oder nur sehr eingeschränkt recyceln lassen. Zudem bestehen sie meist aus petrochemischen oder anderen endlichen Rohstoffen. Gemeinsam mit Industriepartnern entwickeln wir eine ressourcen- und klimaschonende Lösung: recycelbare Leichtbaumaterialien auf Basis nachwachsender Rohstoffe mit individuellen Formgebungsmöglichkeiten. Besonderer Clou: Die Integration einer funktionalen Schicht soll die Herstellung von heizbaren Möbeln und Interieurbauteilen mit Beleuchtungsfunktion ermöglichen. Das Anwendungs- und Marktpotenzial ist branchenübergreifend sehr hoch.

    mehr Info
  • Das Foto zeigt große Waldflächen mit abgestorbenen Bäumen (größtenteils Fichten).
    © Fraunhofer WKI

    Wärme, Trockenheit, Sturm, Borkenkäfer: Im Nationalpark Harz führt der Klimawandel zu großflächigen Waldschäden. Die Wiederbewaldung wird Jahrzehnte dauern. Dies hat erhebliche Auswirkungen auf die Holz- und Forstwirtschaft, den Tourismus und somit auf das Wohlergehen der regionalen Bevölkerung. Gemeinsam mit Forschungs- und Regionalpartnern entwickeln wir unterschiedliche Szenarien für die Wiederbewaldung und prognostizieren deren Ökosystemleistungen sowie darüber hinausgehende, sozioökonomische Effekte. Ein Ansatz besteht darin, die abgestorbenen Fichtenbestände durch klimaresistentere Laubbaumarten zu ersetzen. Am Fraunhofer WKI untersuchen wir die erzielbare Holzqualität und -ausbeute sowie die Eignung der Hölzer zur Herstellung von Holzwerkstoffen.

    mehr Info
  • Das Foto zeigt ein Stück Spanplatte neben einem Laborglas mit einer zähen, schwarzbraunen Flüssigkeit sowie einem kleinen Haufen Holzspäne.
    © Fraunhofer WKI | Manuela Lingnau

    Spanplatten sind ein nachhaltiges und günstiges Baumaterial für Häuser und Möbel. Sie können aus regional verfügbaren Holzresten sowie recyceltem Altholz hergestellt werden. Mit diesem Forschungsvorhaben werden Spanplatten noch zukunftsfähiger. Gemeinsam mit Industriepartnern entwickeln wir Spanplatten, die mit einem neuartigen Klebstoff hergestellt werden. Er soll kein gesundheitskritisches Formaldehyd freisetzen und vollständig aus biogenen Rohstoffen bestehen. Außerdem testen wir, ob sich die Spanplatten mit alternativen Holzarten herstellen lassen, die aufgrund des Waldumbaus künftig vermehrt zur Verfügung stehen.

    mehr Info
  • Das Foto zeigt nebeneinander liegend: ein kleines Stück weißes Glasfasergewebe sowie Balsaholz-Klötzchen, die in eine grünliche Kunststoffschicht eingebettet sind.
    © Fraunhofer WKI | Manuela Lingnau

    Über 30.000 Windräder gibt es bereits in Deutschland. Bis 2030 könnten es mehr als doppelt so viele sein. Eine Windenergieanlage hält etwa 20 bis 30 Jahre und muss dann entsorgt werden. Der Turm aus Stahl und Beton lässt sich schon sehr gut recyceln, die Rotorblätter bisher jedoch nicht. Sie bestehen aus komplexen Multimaterialverbünden – fest verklebt durch duroplastische Harze. Ein vielversprechender Lösungsweg: Mithilfe von wiederlösbaren Harzsystemen könnte man Rotorblätter so bauen, dass die Materialien sich nach Ende der Nutzungszeit sortenrein trennen lassen. Gemeinsam mit Forschungs- und Industriepartnern erarbeiten wir hierfür industriell umsetzbare Produktions-, Trennungs- und Aufbereitungsverfahren. Der Fokus des Fraunhofer WKI liegt auf der Aufbereitung und Wiederverwendung von rückgewonnenen Glasfasern und Balsaholzkomponenten. Damit tragen wir dazu bei, dass Windenergieanlagen nach Ende ihrer Nutzungszeit zu 100 Prozent hochwertig wiederverwertet werden können.

    mehr Info
  • Das Foto zeigt ein aufgeschnittenes Windkraft-Rotorblatt, das innen größtenteils hohl ist. Die Schale ist im mittleren Bereich auf der ganzen Länge des Rotorblatts mit dunkelgrauem Material verstärkt.
    © Fraunhofer WKI | Peter Meinlschmidt

    Nach 20 bis 30 Jahren haben Windenergieanlagen das Ende ihrer Lebensdauer erreicht und müssen rückgebaut werden. Künftig fallen pro Jahr bis zu 75.000 Tonnen Abfälle aus Rotorblättern an, darunter hohe Mengen an Faserverbundkunststoffen. Bisher werden sie energetisch genutzt (verbrannt) oder geschreddert als Zementzuschlag verwertet. Gemeinsam mit Forschungs- und Industriepartnern entwickeln wir eine ressourceneffiziente Lösung: Mittels Pyrolyse wird der Faserverbundkunststoff aus den Rotorblättern in seine Bestandteile zerlegt, um die eingesetzten Fasern zurückzugewinnen. Sowohl diese »Rezyklatfasern« als auch die gleichzeitig anfallenden Pyrolyseöle und Pyrolysegase können industriell genutzt werden. Der Fokus des Fraunhofer WKI liegt auf der nasschemischen Aufbereitung der Rezyklatfasern für die erneute Werkstoffherstellung. Damit tragen wir dazu bei, den Rohstoffbedarf der Windindustrie zu senken.

    mehr Info
  • Das Foto zeigt einen Tisch, auf dem 50 kleine HBV-Prüfkörper liegen. Zwischen Holz und Beton sieht man jeweils eine dünne Klebstoffschicht herausquellen. Die Klebstoffe haben unterschiedliche Farben (rot, transparent, grau, schwarz).
    © Fraunhofer WKI | Dorian Czerner

    Bauen mit Holz ist ein wichtiger Beitrag zum Klimaschutz. Durch die Kombination mit Beton lässt sich der Einsatzbereich von Holzkonstruktionen erweitern. Eine vom Fraunhofer WKI mitentwickelte Klebtechnik ermöglicht die beschleunigte Herstellung von Holz-Beton-Verbundelementen (HBV-Elemente). Im aktuellen Forschungsprojekt »SafeTeCC« optimieren und standardisieren wir das Fertigungsverfahren, um es baustellentauglich und prozesssicher zu machen. Gleichzeitig sollen dadurch die Bauteileigenschaften optimiert werden. Ziel ist es, das Bauen mit HBV-Elementen im mehrgeschossigen Hochbau zu etablieren – als konkurrenzfähige Alternative zu reinen Stahlbetonfertigteilen. Damit tragen wir dazu bei, den Anteil nachwachsender Rohstoffe im Bausektor zu erhöhen und somit Klima- und Nachhaltigkeitsziele zu erreichen.

    mehr Info
  • Grafische Darstellung des Funktionsprinzips der Klebstoffschaltung.
    © Fraunhofer WKI

    Leichte Autos, LKW und Züge aus nachwachsenden Rohstoffen können zum Ressourcen- und Klimaschutz beitragen. Als Fügetechnologie für die Fertigung von Leichtbauteilen bietet insbesondere das Kleben viele Vorteile und gewinnt daher zunehmend an Bedeutung. Gemeinsam mit Forschungs- und Industriepartnern entwickeln wir einen biobasierten, schaltbaren PU-Flächenklebstoff. Dieser soll es ermöglichen, plattenförmige Schichtwerkstoffe aus Holz bzw. Holz und Metall herzustellen, die erst im späteren Verlauf der Prozesskette zu 3D-Bauteilen umgeformt werden. Dies eröffnet neue Möglichkeiten für die flexible, wirtschaftlich effiziente Produktion von nachhaltigen Leichtbaufahrzeugen sowie für die Reparatur und das Recycling. Denn: Dank der wiederlösbaren Klebverbindung sollen sich Holz und Metall sortenrein und möglichst schadfrei wieder trennen lassen.

    mehr Info